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Abstract—Owing to the thriving market of stereoscopic image
based applications, efficient and effective 3D image quality
assessment (IQA) techniques become colossally required these
days. Consequently, we introduce a new reduced-reference (RR)
stereoscopic image quality metric to meet this demand, through
measuring Structural degradation and Saliency based Parallax
compensation Model (SSPM). Experimental results on the LIVE
3D Image Quality Database, including both symmetrically and
asymmetrically distorted stereoscopic images in different cate-
gories and quality levels, are provided to justify the effectiveness
of the proposed SSPM model as compared to some existing pro-
gressive and popular stereoscopic IQA approaches. Meanwhile, it
deserves broad attentions that only four number pairs, extracted
from original image, are required as the key feature to be sent to
the receiver terminal, thus making this procedure also efficient.

Keywords—Performance evaluation, objective evaluation tech-
niques, image quality assessment (IQA), stereoscopic image,
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sation, saliency

I. INTRODUCTION

In these years, human beings gradually incline to pursuing
multimedia contents with higher quality in the traditional
entertainment areas such as motion pictures and video games,
as well as some more specialized fields, including education
and medicine. For this reason, image quality assessment (IQA)
has drawn numerous interests from researchers in these fields.
During the last decade, besides the classical peak signal-to-
noise ratio (PSNR), many impressive objective 2D IQA ap-
proaches have been developed, including human visual system
(HVS) inspired structural similarity index (SSIM) [1], multi-
scale SSIM (MS-SSIM) [2], visual information fidelity (VIF)
[3], and etc. These remarkable 2D image quality metrics are all
well correlated to the subjective mean opinion score (MOS),
and therefore contribute adequate models and theoretical sup-
ports.

Indeed, researchers nowadays tend to show increasing
interest in IQA for stereoscopic images to meet the demand of
the wide application with 3D imaging techniques. In general,
most 3D imagining techniques are to separately present two
2D image in slight difference to the left and the right eye, and
then the 3D image is established in the brain with the certain
perception of 3D depth, which means that a stereoscopic image
is in fact some combination of two 2D images. Therefore, it
is naturally occurred to researchers in the field that 2D IQA
approaches should feasibly be extended to handle stereoscopic
images.

Actually about five years ago, an early full-reference (FR)
stereoscopic IQA method [4] was developed based on the
fusion of 2D quality metrics and the depth information. Subse-
quently, another FR stereoscopic quality metric [5] discussed
different integrations of existing 2D IQA methods and dis-
parity information. In the same year, [6] proposed a reduced-
reference (RR) stereoscopic IQA approach using edges and
contours of 3D depth map as the extracted information. Recent-
ly, no-reference 3D IQA methods [7]-[8] are exploited for 3D
JPEG compressed images, by means of combining 2D quality
metric [9] and parallax compensation. Accordingly, we have a
good reason to believe that extending 2D image quality metric,
combined with stereoscopic information between left and right
images, is a desirable and promising direction.

From the viewpoint of simulating the behaviour of the
HVS, researches on stereoscopic IQA indicate that 2D quality
metric adding stereoscopic information of the 3D image pairs
is not just a practical product, but also theoretically advocated
by a finding [10]. This discovery depicts that cells in the retina
of each eye individually encode their received visual signal,
and then the coded information, later merged in lateral genicu-
late nucleus (LGN), formulate the ultimate stereoscopic image
in the brain. Following this line of research, we consequently
propose a new RR stereoscopic IQA approach by means of
combining two basic parts. One of them is the recently pro-
posed structural degradation model (SDM) [11] for RR image
quality assessment. This 2D IQA approach is mainly developed
based on an interesting observation mentioned in a previous
work [12] that pre-processed by low-pass filtering, images
with various distortion categories and quality levels will have
different degrees of spatial frequency decrease. And the other
part adopts saliency based parallax compensation method to
measure the uncomfortable feeling under the condition of high
degree of parallax.

The remainder of this paper is arranged as the following.
Section II foremost presents the definition and description of
the feature extraction and the saliency based parallax compen-
sation, and then the Structural degradation and Saliency based
Parallax compensation Model (SSPM) is introduced. In Section
III, the performance of our model is reported and analyzed
on the recently released LIVE 3D Image Quality Database
Phase 1 [13] and Phase 2 [17], [18], which contain several
3D images, as well as their symmetrically and asymmetrically
distorted versions in different categories and various quality
levels. Finally, concluding remarks are given in Section IV.



Fig. 1. The flowchart of the proposed SSPM model based RR stereoscopic IQA approach. It shows that the quality of a distorted 3D image can be estimated
by a carefully designed nonlinear combination of the certain extracted features of this distorted stimulus and the original version of it, with the saliency based
parallax compensation of it.

II. THE PREDICTION MODEL

Our proposed reduced-reference 3D IQA metric (SSPM)
can be executed according to the flowchart in Fig. 1. It is
not difficult to acquire that there are three cardinal steps
included for measuring SSPM, which are feature extrac-
tion, saliency based parallax compensation, and an effective
nonlinear combination. As the demonstration in Fig. 1, we
foremost adopt the recently proposed structural degradation
information [12] in the sender side. In spite of the fact
that the structural degradation information is originated from
structural information [1], it has more flexibility in assessing
image quality, because the structural degradation information
can flourishingly discriminates disparate distortion types, as
mentioned in [12]. In this work, the structural degradation
information for the original left or right image is defined as

SDm,t(XL) = SSIM(µX (L)(d = 0.1), µX (L)(d = 1.5))

SDv,t(XL) = SSIM(σX (L)(d = 0.1), σX (L)(d = 1.5)) (1)

SDm,t(XR) = SSIM(µX (R)(d = 0.1), µX (R)(d = 1.5))

SDv,t(XR) = SSIM(σX (R)(d = 0.1), σX (R)(d = 1.5)) (2)

where XL/XR represents the original left/right image, while
m and v correspond to µX (L)(d) and σX (L)(d) (or µX (R)(d)
and σX (R)(d)). In addition, t = {i, e} is for interior parts or
exterior parts of blocks. As illustrated in Fig. 2, for a block
with the size of 8× 8, the dark gray part is the exterior part,
while the middle part colored with light gray is the interior
part. Moreover, the function SSIM(·) is defined in a previous
work [1].

Referring to the initial definitions of µX and σX in [1],
we reconfigure µX (L)(d) and σX (L)(d) (or µX (R)(d) and
σX (R)(d)) as:
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1
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with w = {wij |i, j = 1, ..., N}, satisfying Sum(w) = 1
and V ar(w) = d (function Sum(·) and V ar(·)) are used to
compute the sum and variance values, respectively).

While the distorted stereoscopic image is sent to the
receiver side through the distortion channel, four number pairs
(SDm,t(XL), SDv,t(XL), SDm,t(XR) and SDv,t(XR), with
t = {i, e}) are extracted as the RR features and transferred to
the reviewer side. Afterward, the feature extraction procedure
is compulsory in the stage of the receiver as well. In this case,
the structural degradation information of distorted 3D image
Y (SDm,t(YL), SDv,t(YL), SDm,t(YR) and SDv,t(YR), with
t = {i, e}) are correspondingly evaluated in accordance with
the method for computing that of the original image X.

Compared to 2D image quality metrics, besides the image
pair themselves, stereoscopic IQA dramatically depends on
stereoscopic information between the left and right images
as well. In general, it is probably admitted that the higher
qualities of left and right images are, the higher quality of the
corresponding 3D image will be. In this work, we find this
common sense, however, is not always valid. To justify, an
experiment has been conducted by taking advantage of two in-
dicating original stereoscopic images that are carefully selected

Fig. 2. An illustration of interior parts or exterior parts of blocks. For a
block with the size of 8× 8, the dark gray part is the exterior part, while the
middle part colored with light gray is the interior part.
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Fig. 3. The illustration of the relationship between DMOS value of a stereoscopic image and the corresponding PSNR (or SSIM) results of left and right
images. Red symbols indicate distorted 3D images corresponding to the original 3D image of Fig. 4 (a) and (b), while blue symbols are the contaminated
versions of Fig. 4 (c) and (d). Note that the lower DMOS of an image indicates its higher image quality.

from the LIVE 3D Image Quality Database Phase 1 [13], as
illustrated in Fig. 4. Their distorted stimuli are subjected to
JPEG2000 and JPEG compression, white noise injection and
fast-fading. Since these two pair of typical samples are chosen
from the Phase 1 database, the corresponding left and right
images are distorted symmetrically.

In this case, we apply two of the most classical IQA
approaches, PSNR and SSIM, to evaluate the qualities of
these four pictures, noted as PSNR(YL), PSNR(YR), SSIM(YL)
and SSIM(YR). Fig. 3 displays the relationship between 3D
image qualities and the corresponding couples of PSNR(YL)
and PSNR(YR) (or SSIM(YL) and SSIM(YR)) values. Red
symbols indicate distorted versions of the original 3D image
pair Fig. 4 (a) and (b), while blue symbols are the contaminated
versions of Fig. 4 (c) and (d). In addition, DMOS of each
sample is also presented in the label of figures in Fig. 3
and several fascinating phenomena are recognized. Contrast
to the common sense, higher left/right image qualities do not
necessarily lead to higher 3D quality indeed. As far as Fig.
3 (a), (b) and (e) are concerned, the blue “◦”, indicating 3D
images with lower qualities of both 2D images, yet have a
higher 3D image quality. Furthermore, Fig. 3 (d) shows that
3D images corresponding to red “◦” and blue “�” have close
2D image quality but different 3D qualities. On the other
hand, the SSIM metric, however, is capable of eliminating
the mentioned anomaly in some cases. In other words, the
structural information should possibly have more positive
effect on measuring stereoscopic image quality. For instance,
it is obvious that the red and blue “◦” corresponding to SSIM
scores in Fig. 3 (f) manage to conquer the anomaly, while
PSNR results in Fig. 3 (e) show an inferior performance.
This discovery encourages us to adopt the formerly mentioned
structural degradation information (the improved structural
information) as an effective feature for the proposed RR IQA
approach.

We believe that this anomaly is related to both image con-

tents and stereoscopic parallax. Take the pictures in Fig. 4 for
example once more, these two pairs have very similar scene,
including a mountain bike, fence and a teaching building,
yet with different saliency regions and degrees of parallax.
Furthermore, it is observed in [14] that the low subjective
evaluation is introduced from high degrees of parallax. We
therefore attribute the above-mentioned anomaly to uneven
parallax, and adopts an effective compensation technique fol-
lowing the underlying idea of [7]. The parallax is defined to
reimburse the anomaly as follows with |·|2 being 2 order norm:

ρ = cos−1(
< YL · YR >
|YL|2 · |YR|2

) (5)

Inspired by the behavior and the neuronal architectures of
the early primate visual system, a classic saliency model [15]
has been developed to construct a single topographical saliency
map. This model first combine multi-scale image features,

(a) (b)

(c) (d)

Fig. 4. The carefully selected two representative original stereoscopic images
with similar scene but different saliency regions and degrees of parallax.



including colors, intensity and orientations, and then a winner-
take-all network, which implements a neutrally distributed
maximum detector, is performed to detect the most salient
locations gradually until the final saliency map is achieved.
To further explore Eq. (5) by employing this saliency model,
the saliency based parallax can be evaluated as:

ρS = cos−1(
< YL(S) · YR(S) >
|YL(S)|2 · |YR(S)|2

) (6)

where S represents saliency regions computed by the authors of
[15]. To compensate the uncomfortable parallax, the saliency
based parallax compensation is ultimately estimated by:

P (Y ) = w · ρ+ wS · ρS (7)

with w and wS being model parameters.

After feature extraction and saliency based parallax com-
pensation parts are well illustrated in the receiver side, we still
confront a major problem on combining the extracted features
and the saliency based parallax compensation. Owing to the
fact discovered in some previous works that the difference
between structural degradation information of the original
image X and distorted image Y can discriminate the five
commonly seen distortion categories, we consequently define
the distance of structural degradation information as:

DV,s,t = SDs,t(XV )− SDs,t(YV ). (8)

where s = {m, v}, t = {i, e} and V = {L,R}.
Then, the G(DV,s,t) is carefully defined to measure the

image quality for one group of the given {V, s, t} values. In
this case, G(DV,s,t) can be valued by:

G(DV,s,t) = λs,t · (DV,s,t)
γs,t (9)

where λs,t and γs,t, with s = {m, v} and t = {i, e}, are the
model parameters.

Finally, the proposed SSPM model is designed by properly
combining G(DV,s,t) and P (Y ). Following the format used in
[4], our SSPM model is defined as:

(a) (b)

(c) (d)

Fig. 5. An example of a pair of stereoscopic image and its saliency map.
The highlighted white regions in (c) and (d) are determined as the saliency
regions of the scene shown in (a) and (b).

SSPM = (2D qualities sum)(
1

2
+ parallax value)

= [
∑

G(DV,s,t)] · (
1

2
+ P (Y )) (10)

where s = {m, v}, t = {i, e} and V = {L,R}.

III. EXPERIMENTAL RESULTS

Performance of SSPM metric is tested on the LIVE 3D
Image Quality Database, which contains 2 phases and various
distortion levels. Phase 1 [13] includes 20 reference 3D images
and 365 symmetrically distorted stimuli of them, while Phase 2
[17], [18] contains 8 reference images and 360 distorted stimuli
including both symmetrically and asymmetrically distorted
versions. For comparison, mappings of the scores to subjec-
tive scores of our proposed SSPM together with mainstream
metrics, including Benoit [4], You [5], Hewage [6], Chen [17],
Cyclopean MS-SSIM [18] and Akhter [19], are obtained after
using nonlinear regression with a logistic function suggested
by VQEG [16]:

q(z) =
ξ1 − ξ2

1 + exp(− z−ξ3ξ4
)
+ ξ2 (11)

with z and q(z) being the input score and the mapped score,
respectively. The free parameters ξ1 - ξ4 are to be determined
during the curve fitting process.

In order to further evaluate the competitive SSPM metrics,
we apply three performance metrics for comparison, involving
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-Order Correlation Coefficient (SROCC), and Root Mean-
Squared Error (RMSE) as suggested by VQEG [16]. Note
that Benoit [4], You [5] and Cyclopean MS-SSIM [18]are
full-reference metrics, Chen [17] and Akhter [19] are no-
reference methods, while Hewage [6] and our proposed SSPM
are reduced-reference algorithms.

A. Performance on LIVE 3D Database Phase 1

Table I-III tabulate the performance results, and the scatter
plots of differential MOS (DMOS) versus SSPM on the overall
LIVE 3D database Phase 1 and five data sets of different
distortion categories are shown in Fig. 6.

It is explicit that our paradigm has achieved much better
results than the mainstream FR ,RR and NR stereoscopic IQA
methods while images are distorted symmetrically, especially
for JPEG compression.

TABLE I. SROCC VALUES OF THE MAINSTREAM 3D IQA METRICS
ON THE LIVE 3D DATABASE PHASE 1

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 0.930 0.910 0.603 0.931 0.699 0.899

You [5] 0.940 0.860 0.439 0.882 0.588 0.878

C. MS-SSIM [18] 0.948 0.888 0.530 0.925 0.707 0.916

Hewage [6] 0.940 0.856 0.500 0.690 0.545 0.814

SSPM 0.920 0.843 0.701 0.857 0.691 0.916

Chen [17] 0.919 0.863 0.617 0.878 0.652 0.891

Akhter [19] 0.914 0.866 0.675 0.555 0.640 0.383
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Fig. 6. Scatter plots of DMOS vs. the proposed SSPM metric on the whole LIVE 3D database Phase 1 and five data sets of different distortion types.

TABLE II. PLCC VALUES OF THE MAINSTREAM 3D IQA METRICS ON
THE LIVE 3D DATABASE PHASE 1

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 0.925 0.939 0.640 0.948 0.747 0.902

You [5] 0.941 0.877 0.487 0.919 0.730 0.881

C. MS-SSIM [18] 0.942 0.912 0.603 0.942 0.776 0.917

Hewage [6] 0.895 0.904 0.530 0.798 0.669 0.830

SSPM 0.915 0.909 0.744 0.909 0.771 0.922

Chen [17] 0.917 0.907 0.695 0.917 0.735 0.895

Akhter [19] 0.904 0.905 0.729 0.617 0.503 0.626

TABLE III. RMSE VALUES OF THE MAINSTREAM 3D IQA METRICS
ON THE LIVE 3D DATABASE PHASE 1

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 6.307 4.426 5.022 4.571 8.257 7.061

You [5] 5.621 6.206 5.709 5.679 8.492 7.746

C. MS-SSIM [18] 5.581 5.320 5.216 4.822 7.837 6.533

Hewage [6] 7.405 5.530 5.543 8.748 9.226 9.139

SSPM 2.263 2.121 1.921 2.169 2.517 2.211

Chen [17] 6.433 5.402 4.523 5.898 8.322 7.247

Akhter [19] 7.092 5.483 4.273 11.387 9.332 14.827

B. Performance on LIVE 3D Database Phase 2

Table IV-VI present the performance comparison on the
LIVE 3D database Phase 2, while the scatter plots of differ-
ential MOS (DMOS) versus SSPM are shown in Fig. 7 . It
can be seen that our proposed SSPM metric also has a quite
advanced and competitive performance, especially as far as
RMSE values are concerned, even though the distorted dataset
contains both symmetric and asymmetric stimuli. Considering
that our model does not work very well for some distortion
types, such as JPEG2000 compression, yet we admit that there
are still margins for improvement of the SSPM metric, which
provides us a promising direction for future study.

TABLE IV. SROCC VALUES OF THE MAINSTREAM 3D IQA METRICS
ON THE LIVE 3D DATABASE PHASE 2

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 0.923 0.751 0.867 0.455 0.773 0.728

You [5] 0.909 0.894 0.795 0.813 0.891 0.786

C. MS-SSIM [18] 0.940 0.814 0.843 0.908 0.884 0.889

Hewage [6] 0.880 0.598 0.736 0.028 0.684 0.501

SSPM 0.940 0.751 0.768 0.900 0.920 0.820

Chen [17] 0.950 0.867 0.867 0.900 0.933 0.880

Akhter [19] 0.714 0.724 0.649 0.682 0.559 0.543

TABLE V. PLCC VALUES OF THE MAINSTREAM 3D IQA METRICS ON
THE LIVE 3D DATABASE PHASE 2

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 0.926 0.784 0.853 0.535 0.807 0.748

You [5] 0.912 0.905 0.830 0.784 0.915 0.800

C. MS-SSIM [18] 0.957 0.834 0.862 0.963 0.901 0.900

Hewage [6] 0.891 0.664 0.734 0.450 0.746 0.558

SSPM 0.918 0.752 0.788 0.938 0.914 0.824

Chen [17] 0.947 0.899 0.901 0.941 0.932 0.895

Akhter [19] 0.722 0.776 0.786 0.795 0.674 0.568

IV. CONCLUSION

In this paper, we develop a Structural degradation and
Saliency based Parallax compensation Model (SSPM) inspired
reduced-reference stereoscopic IQA approach. This method
mainly consists of the following three parts: feature extraction
with structural degradation detection, saliency based parallax
compensation on uncomfortable parallax, and an effective
nonlinear combination. Experimental results on the LIVE 3D
Image Quality Database verified that the performance of the
proposed method is quite an advanced and competitive one
among the mainstream NR, RR and FR stereoscopic image
quality metrics. Furthermore, our IQA algorithm has a remark-
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Fig. 7. Scatter plots of DMOS vs. the proposed SSPM metric on the whole LIVE 3D database Phase 2 and five data sets of different distortion types.

TABLE VI. RMSE VALUES OF THE MAINSTREAM 3D IQA METRICS
ON THE LIVE 3D DATABASE PHASE 2

Algorithm WN JP2K JPEG GBlur FF All

Benoit [4] 4.028 6.096 3.787 11.763 6.894 7.490

You [5] 4.396 4.186 4.086 8.649 4.649 6.772

C. MS-SSIM [18] 3.368 5.562 3.865 3.747 4.966 4.987

Hewage [6] 10.713 7.343 4.976 12.436 7.667 9.364

SSPM 1.947 2.470 2.031 2.672 2.116 2.264

Chen [17] 3.513 4.298 3.342 4.725 4.180 5.102

Akhter [19] 7.416 6.189 4.535 8.450 8.505 9.294

able merit that only negligible amount of information (four
number pairs) is needed to be transmitted to the receiver end,
which can be easily encoded into file headers.
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